

CAUTIONARY STATEMENTS

Forward-Looking Statements

This presentation contains "forward-looking" statements and information relating to the Company, Macpass and Mactung Projects that are based on the beliefs of Company management, as well assumptions made by and information currently available to Company management. Such statements reflect the current risks, uncertainties and assumptions related to certain factors, including but not limited to, without limitations, exploration and development risks, expenditure and financing requirements, general economic conditions, changes in financial markets, the ability to properly and efficiently staff the Company's operations, the sufficiency of working capital and funding for continued operations, title matters, First Nations relations, operating hazards, political and economic factors, competitive factors, metal prices, relationships with vendors and strategic partners, governmental regulations and oversight, permitting, seasonality and weather, technological change, industry practices, and one-time events. Additional risks are set out in the Company's prospectus dated May 9, 2017, and filed under the Company's profile on SEDAR+ at www.sedarplus.ca. Should any one or more risks or uncertainties materialize or change, or should any underlying assumptions prove incorrect, actual results and forward-looking statements may vary materially from those described herein. The Company does not undertake to update forward-looking statements or forward-looking information, except as required by law.

The estimation of mineral resources is inherently uncertain and involves subjective judgments about many relevant factors. Mineral resources that are not mineral reserves do not have demonstrated economic viability. The accuracy of any such estimates is a function of the quantity and quality of available data, and of the assumptions made and judgments used in engineering and geological interpretation, which may prove to be unreliable and depend, to a certain extent, upon the analysis of drilling results and statistical inferences that may ultimately prove to be inaccurate. Mineral resource estimates may require re-estimation based on, among other things: (i) fluctuations in the price of zinc and other metals; (ii) results of drilling; (iii) results of metallurgical testing, process and other studies; (iv) changes to proposed mine plans; (v) the evaluation of mine plans subsequent to the date of any estimates; and (vi) the possible failure to receive required permits, approvals and licenses.

NI 43-101 Qualified Persons

Pierre Landry, P.Geo., SLR Managing Principal Resource Geologist. is independent of Fireweed Metals. and a 'Qualified Person' as defined under Canadian NI 43-101. Mr. Landry is responsible for the Mineral Resource Estimate for the Macpass Project and directly related information in this presentation – a technical report entitled "Technical Report for NI 43-101, Macpass Project, Yukon, Canada" was filed on October 18 2024 at https://www.sedarplus.ca/. For Mactung Mineral Resources, see Fireweed Technical Report entitled "NI 43-101 Technical Report, Mactung Project, Yukon Territory, Canada," with effective date July 28, 2023 filed on https://www.sedarplus.ca/. Garth Kirkham, P.Geo. is independent of Fireweed Metals Corp., and a 'Qualified Person' as defined under Canadian National Instrument 43-101. Garth Kirkham, of Kirkham Geosystems Limited., is responsible for the Mactung Mineral Resource Estimate. Dr. Jack Milton P.Geo., VP Exploration, Fireweed Metals and a Qualified Person under the meaning of Canadian National Instrument 43-101, is responsible for all other technical information in this presentation.

Notes

* References to relative size and grade of the Mactung resources and Macpass resources in comparison to other tungsten and zinc deposits elsewhere in the world, respectively, are based on review of the Standard & Poor's Global Market Intelligence Capital IQ database.

PROJECT LOCATIONS & EXISTING INFRASTRUCTURE

Macpass District

Macpass (Zn-Pb-Ag-Ga-Ge) & Mactung (W) Projects

(~985 km² land package)

- Macpass: multiple large-scale sediment hosted zinc-primary deposits with mineralization hosted along splays of the Hess-Macmillan structural trend
- Mactung: high-grade tungsten skarn deposit hosted within intrusives of the Tombstone Tungsten Belt

Projects Are Accessible Via Road and Existing Airstrip at Site

Alaska Dawson Yukon Ross River Whitehorse Skagway, Watson Lake Alaska British Dawson

Gayna (Zn-Pb-Ag) Project

Early-stage project with a geologic setting and mineralization in-line with high-grade reef-style deposits

Railhead 🚊

Northwest

Trail Smelter

o km

250 km

500 km

Deep-sea port with

access to Asia

Columbia

Trail, BC Creek

Territories

INVESTMENT HIGHLIGHTS

Advancing a Critical Metals District: Owner of a 985 km² land package, comprising two of the world's largest undeveloped resources in their class:¹

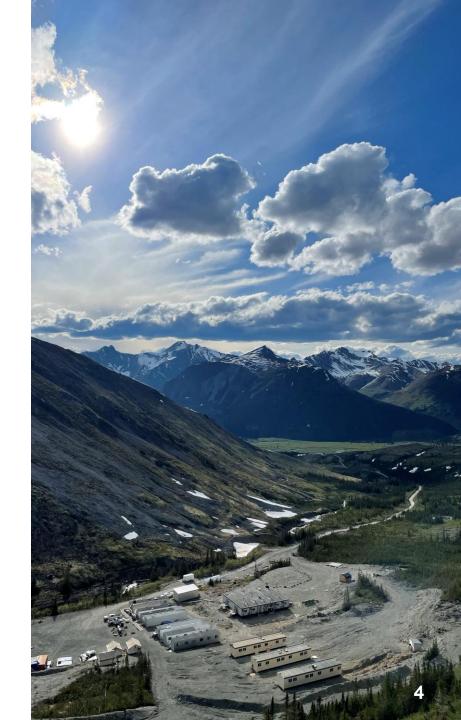
Mactung (Tungsten)

► The world's largest high-grade tungsten deposit¹

Macpass (Zinc-Lead-Silver-Gallium-Germanium)

- One of the world's largest undeveloped zinc assets not held by a major
- 2024 Mineral Resource Estimate ("MRE") more than doubled resource tonnage and tripled contained ZnEq² metal in Indicated Resources

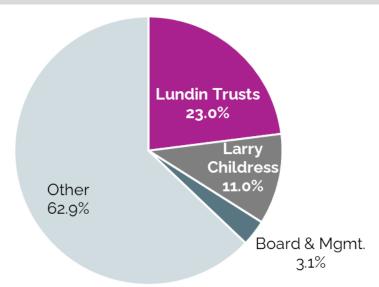
Government Critical Metals Funding: ~C\$35.40 M in joint U.S. DPA Title III and Canadian CMIF funding to advance Mactung's development and planning for road and power infrastructure supporting the critical metals district at Macmillan Pass



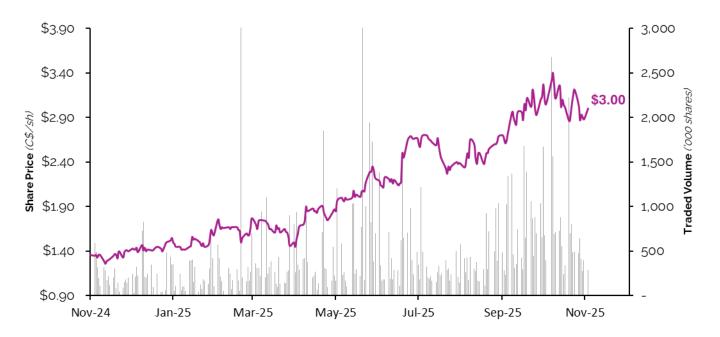
Invested in Growth and Unlocking the District: Over 16,000 m of drilling (post MRE cut-off) driving known mineralized zone extensions and new discoveries. Multiple targets generated from regional exploration efforts

Backed by District Builders: a Lundin Group Company

Note: MRE effective date: September 4, 2024. For complete MRE-related notes refer to the relevant slides at the end of this presentation.


^{1.} References to relative size, grade, and metal content of the Mactung resources and Macpass resources in comparison to other tungsten, zinc, gallium, and germanium deposits elsewhere in the world, respectively, are based on review of the Standard & Poor's Global Market Intelligence Capital IQ database.

^{2.} Zinc equivalency is based on a price of US\$1.40/lb Zn, US\$1.10/lb Pb, and US\$25/oz Ag, CAD:USD exchange rate of 1.32, and a number of operating cost and recovery assumptions specific to each deposit or domain.


FIREWEED CORPORATE OVERVIEW

Capital Structure

Share Price ¹	(C\$ / sh)	\$3.00
Issued & O/S Shares ^{1,2}	(M shares)	210.9
Market Cap.	(C\$ M)	\$632.6
52-week High / Low	(C\$ / sh)	\$3.40 / \$1.26
Cash Balance ³	(C\$ M)	\$63.6

Fireweed Share Price Performance (LTM)¹

Analyst Coverage

¹ Market data as of November 10, 2025.

² Fully diluted shares: 223.9

³ As of June 30, 2025

LEADERSHIP

Adam Lundin Chairman

- Lundin Mining Corporation Chairman
- Filo Corp. Chairman*
- Josemaría Resources Director, President & CEO*
- NGEx Minerals, Lucara Diamond Director

lan Gibbs

Director, President & CEO

- Filo Corp. CFO*
- Josemaría Resources CFO*
- Africa Oil Corp. CFO*
- Tanganyika Oil CFO*
- Valkyries Petroleum CFO*
- Lundin Gold, Lucara Diamond Director

MANAGEMENT

Tyler Keeling CFO

Jack Milton
VP Exploration

Alex Campbell VP Corp. Development

lan Ponsford VP External Affairs

Lauren Haney
VP Indigenous Relations
& Sustainability

Ben Patterson VP Projects & Evaluations

Penny JohnsonCorporate Secretary

BOARD OF DIRECTORS

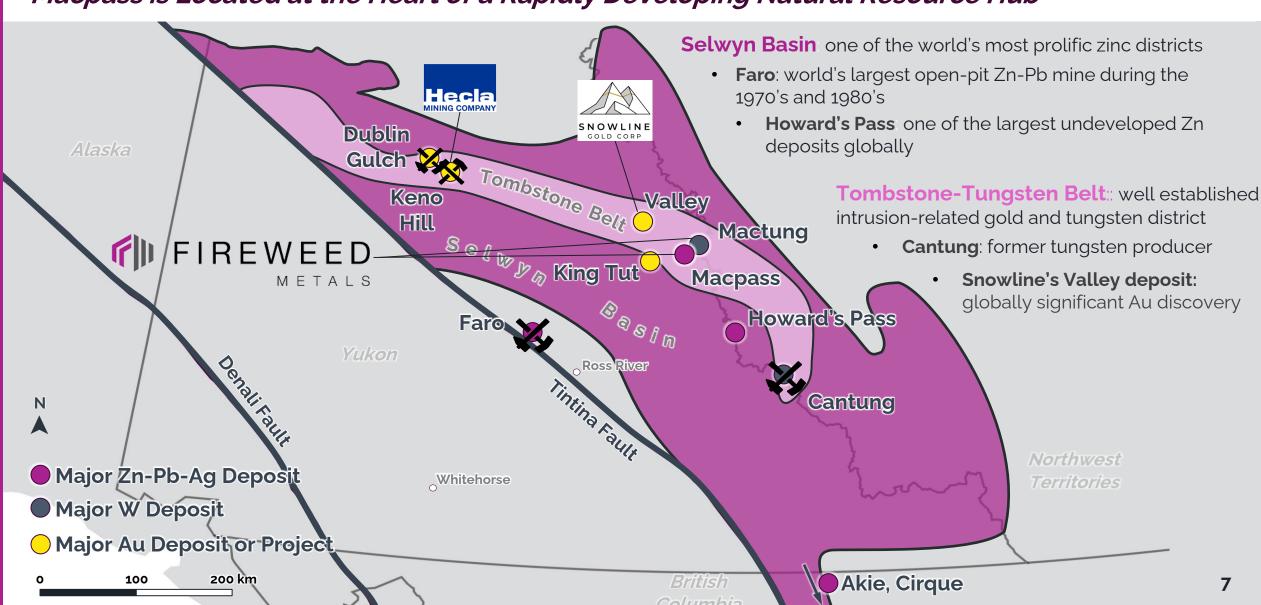
Paul Harbidge Faraday Copper - CEO

Jamie Beck Filo Corp. – CEO*

Ron F. Hochstein

Wojtek Wodzicki NGEx Minerals - CEO

Jill Donaldson IWJ Law – Senior Adviser



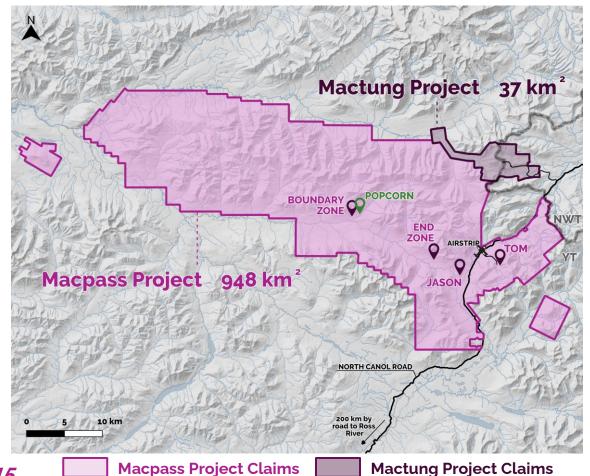
Peter Hemstead Bluestone Resources - CEO*

^{*} Denotes former position held

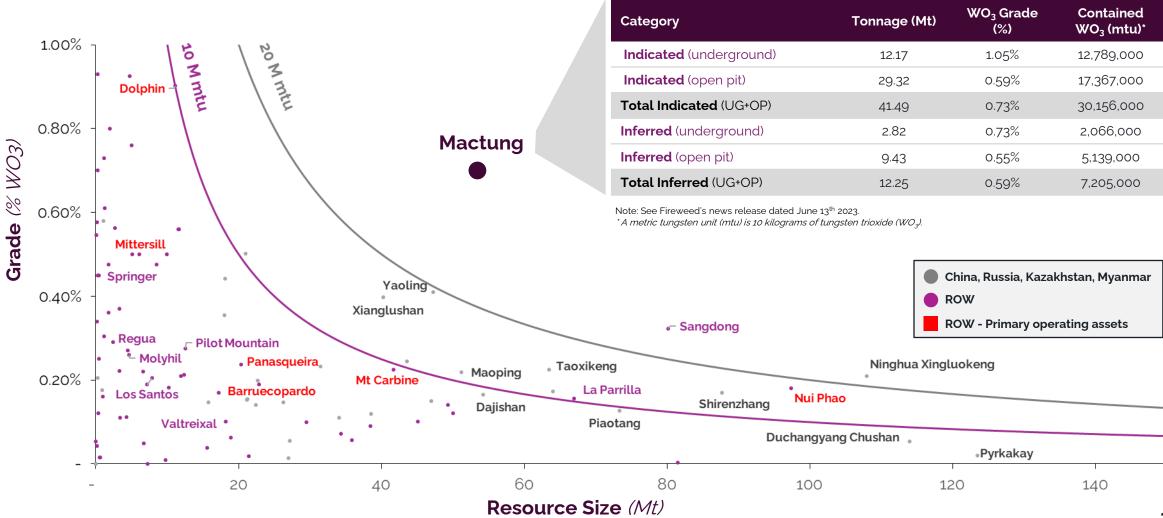
REGIONAL GEOLOGY

Macpass is Located at the Heart of a Rapidly Developing Natural Resource Hub

A Strategic North American Tungsten Resource

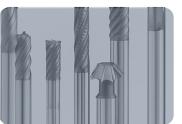

We respectfully acknowledge that the Mactung Project is located on the Traditional Territories of the Kaska Dena Nation and the First Nation of Na-Cho Nyäk Dun, and the Sahtu Settlement Area.

THE WORLD'S LARGEST HIGH-GRADE TUNGSTEN DEPOSIT


Leading the Way in Unlocking our Critical Metals District

Mactung Highlights

- ✓ Host to a large, high-grade, tungsten deposit, 100% owned by Fireweed
- ✓ Adjacent to Macpass, and accessible via the North Canol Road and the Macmillan Pass aerodrome
- ✓ Historical Feasibility Study (2009)
- ✓ Environmental Assessment completed in 2014
- ✓ 2025 Comprehensive drilling and field program completed
- ✓ Commencing updated Feasibility Study in 2025
- ✓ 2028 target Final Investment Decision ("FID")
- ✓ US\$15.8 M awarded by US Department of Defense under Defense Production Act Title III ("DPA")
- ✓ C\$12.9 M awarded under Canadian Critical Mineral Infrastructure Fund ("CMIF") to advance infrastructure improvement planning


MACTUNG STANDS OUT

Mactung 2023 Resource Estimate

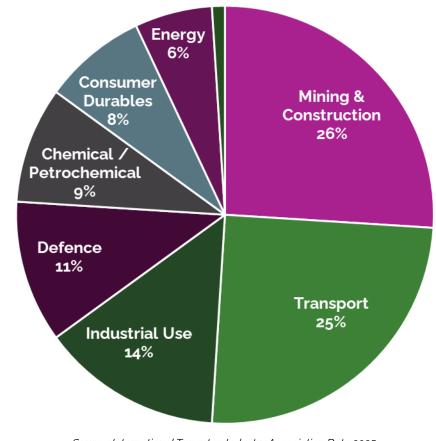
TUNGSTEN OVERVIEW

Properties

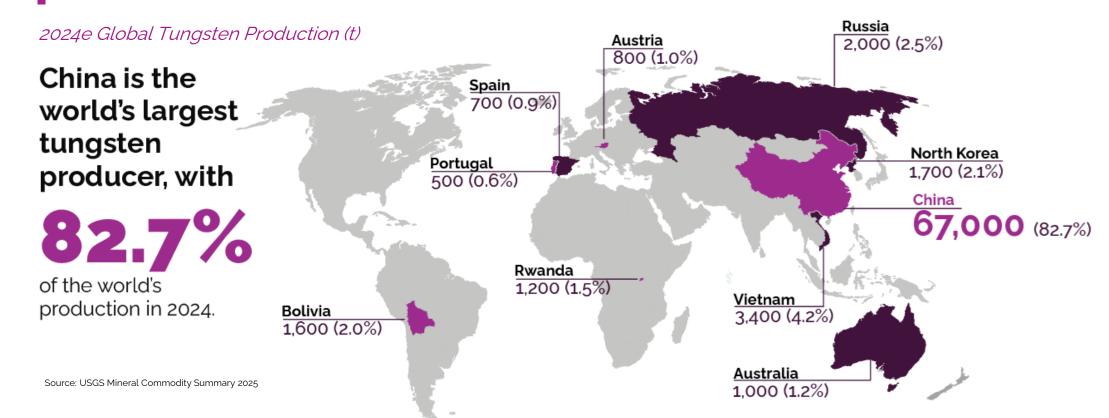
- Highest melting point metal (3,422 °C)
- Ultra-dense (virtually as dense as gold)
- Exceptional hardness & strength
- Resistance to heat and corrosion

Tungsten remains stable under extreme conditions, making it one of the most durable materials known

Industrial Applications


- Automotive Parts
- Aerospace & Defence
- Industrial Machinery
- Drilling, Boring, & Cutting
 - Logging & Mining
 - Electrical & Electronics Appliances

Legend

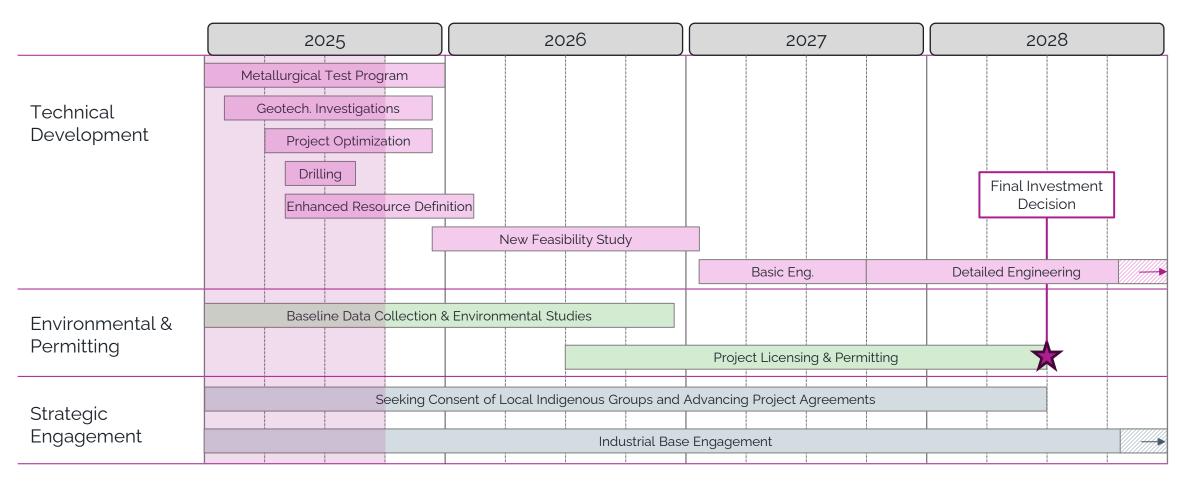

- Carbides
- Alloys & Mill Products

Scheelite (CaWO4)
mineral ore is the preferred
source of tungsten

WHY TUNGSTEN?

No Domestic Tungsten Sources

No North American production of tungsten concentrates since 2015


Supply Disruptions

Major supply chain disruptions resulting from Chinese export restrictions

Critical and Strategic 💹 🙌 💮

Tungsten has been added to the **U.S.**, **Canada**, **E.U.**, and **NATO** critical minerals lists given its **strategic importance** to **economies** and **national security**

MACTUNG DPA PROGRAM TIMELINE

Note: estimated timeline

Rapidly-Growing District

We respectfully acknowledge that the Macpass Project is located on the Traditional Territories of the Kaska Dena Nation and the First Nation of Na-Cho Nyäk Dun.

MACPASS DISTRICT

Macpass 2024 MRE

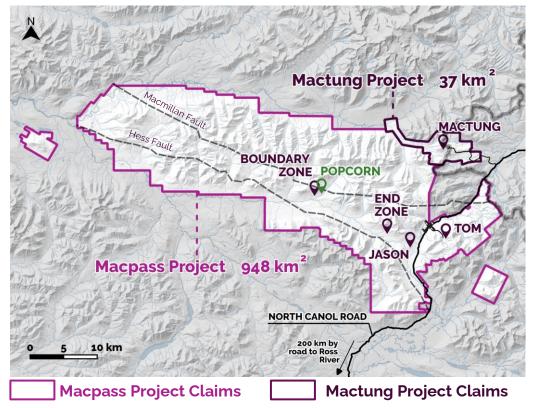
55.98 Mt at 7.27% ZnEq^{2,3} (5.50% Zn, 1.58% Pb, and 24.2 g/t Ag)

48.46 Mt at 7.48% ZnEq^{2,3}

(5.15% Zn, 2.08% Pb, and 25.3 g/t Ag)

Indicated Inferred

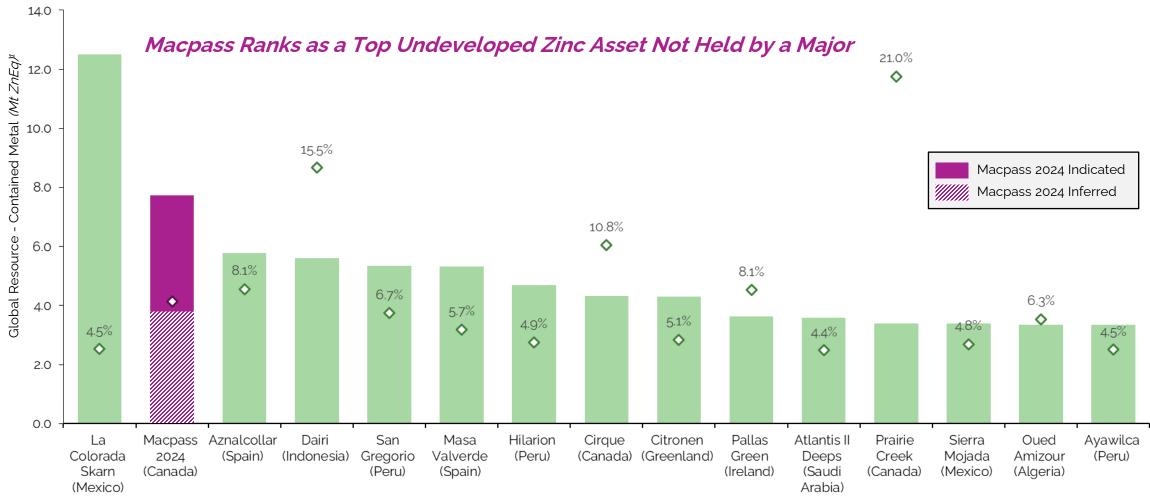
Globally Significant Gallium (Ga) and Germanium (Ge) Metal Content


- 412,900 kg **Ga** + 614,800 kg **Ge** by-product in **Indicated** Resource³
- 282,100 kg Ga + 394,400 kg Ge by-product in Inferred Resource³

Highlights

- 2025 8,850 m exploration drill program completed
- ✓ Continuing to define extensions at known mineralized zones (post MRE cut-off)
- ✓ Multiple high-priority regional targets drilled, including Zn-Pb-**Ag-Ga-Ge** targets and **intrusion-related Au** targets
- ✓ **Structural control** along SE-NW trends (948 km² land package) to drive additional prospectivitiy

Multiple Large-scale Sediment Hosted Zinc-primary Deposits Forming One of the World's Largest Undeveloped Zinc Districts¹


The Macpass District

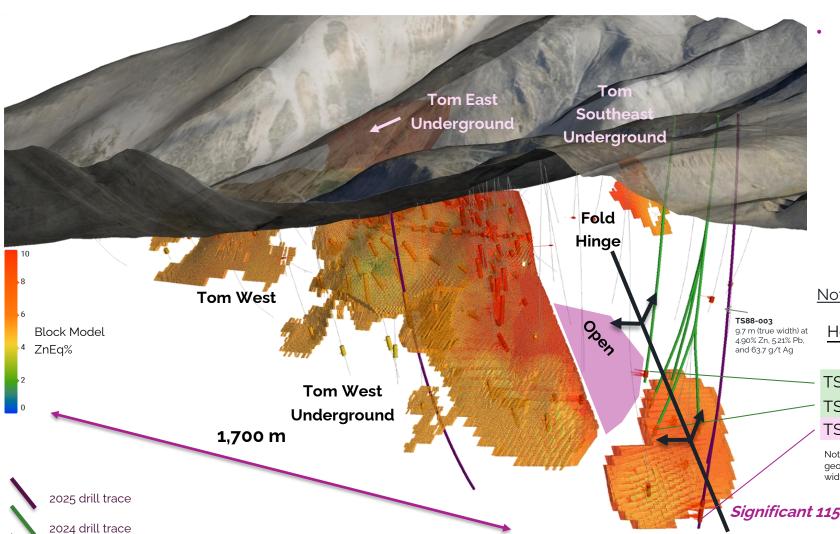
1 References to relative size, grade, and metal content of the Mactung resources and Macpass resources in comparison to other tungsten, zinc, gallium, and germanium deposits elsewhere in the world, respectively, are based on review of the Standard & Poor's Global Market Intelligence Capital IQ database. 2 Zinc equivalency is based on a price of US\$1.40/lb Zn, US\$1.10/lb Pb, and US\$25/oz Ag, CAD:USD exchange rate of 1.32, and a number of operating cost and recovery assumptions specific to each deposit or domain. Gallium and germanium do not contribute to the zinc equivalency calculations in the MRE. The 2018 NI43-101 technical report on the previous mineral resource is available for comparison on https://www.sedarplus.ca/.3 There is no known precedent for germanium or gallium to be payable in zinc concentrates. Therefore, Fireweed have attributed precedent for germanium or gallium to be payable in zinc concentrates. The concentrates are value to gallium and germanium in the Net Smelter Return ("NSR") calculations used to define the mineral to gallium and germanium in the Net Smelter Return ("NSR") calculations used to define the mineral to gallium and germanium in the Net Smelter Return ("NSR") calculations used to define the mineral to gallium and germanium in the Net Smelter Return ("NSR") calculations used to define the mineral to gallium and germanium in the Net Smelter Return ("NSR") calculations used to define the mineral to gallium and germanium in the Net Smelter Return ("NSR") calculations used to define the mineral to gallium and germanium in the Net Smelter Return ("NSR") calculations used to define the mineral to gallium and germanium in the Net Smelter Return ("NSR") calculations used to define the mineral to gallium and germanium in the Net Smelter Return ("NSR") calculations used to define the mineral to gallium and germanium in the Net Smelter Return ("NSR") calculations used to define the mineral to gallium and germanium in the Net Smelter Return ("NSR") calculations used to gallium to gallium and germanium in the Net Smelter Return ("NSR") calculations used to gallium t resource and germanium and gallium do not contribute to the Reasonable Prospects for Eventual Economic Extraction ("RPEEE") associated with resource category classification.

MACPASS RELATIVE POSITIONING

<u>Select Zinc-primary Development Assets - Ranked by Contained Metal (Mt ZnEq ; % ZnEq)</u>*

Note: Ranking excludes assets located in China, Russia, Iran, and Myanmar, as well as assets that are unlikely to be developed or advanced due to technical challenges (Selwyn, Admiral Bay, Reward, Hackett River).

^{*} ZnEq quantities calculated based on the content of the following metals: Zn, Pb, Cu, Ag, Au. ZnEq pricing based on Macpass 2024 MRE assumptions (US\$1.40/lb Zn, US\$1.10/lb Pb, US\$25.0/oz Ag) and LT analyst consensus estimates (US\$4.08/lb Cu and US\$1,915/oz Au Source SNL Cap IQ and company public disclosure.


FIELD PROGRAM OVERVIEWS

2024 Program Overview - Macpass						
Activities	+16,000 m Drilling Combination of step-out holes at Boundary Zone, Tom South and Jason South + exploration drilling at new targets	Regional Exploration Gravity, VTEM, LiDAR, soil Sampling, and Muon Survey				
Outcome	 Successful high-grade step-outs at Tom, Jason and Boundary (post 2024 MRE cut-off) Discovery of Popcorn—moving to an advanced prospect 	 Multiple drill-ready targets have been generated, including zinc-lead-silver-gallium-germanium targets and intrusion-related gold targets 				

2025 Program Overview (Completed)

Mactung - Comprehensive Field Program Macpass - Targeted Exploration Gayna - Inaugural Drilling 8,850 m completed focused on drill-testing: Extensive field program to support project 3,806 m drilling completed Regional exploration targets with the optimization feeding into a new Feasibility: testing for high-grade zinc-leadhighest prospectivity (zinc-leadsilver mineralization along 11,117 m drilling completed, consisting of holes performing multiple functions: silver-gallium-germanium, and gold identified reef margin anomalies geometallurgy, hydrogeology, and targets) (assays pending) Wide step-outs at known deposits geotechnical Comprehensive regional exploration Additional historical drill core scanning and program completed expanded gold assay coverage

TOM SOUTH STEP-OUTS

Pre-2024 drill trace

- Tom South is interpreted as a fold hinge the thickened axis and feeder zone around which the entire Tom deposit is folded
 - 2024 drilling: successful high-grade intercepts up-dip and along strike expanded massive sulphide lense
 - Potential for additional high-grade step-outs
 - 2025 program: widely spaced step-out drilling to test for up and down-dip extensions of mineralization

Notable 2024 Massive Sulphide Step-outs

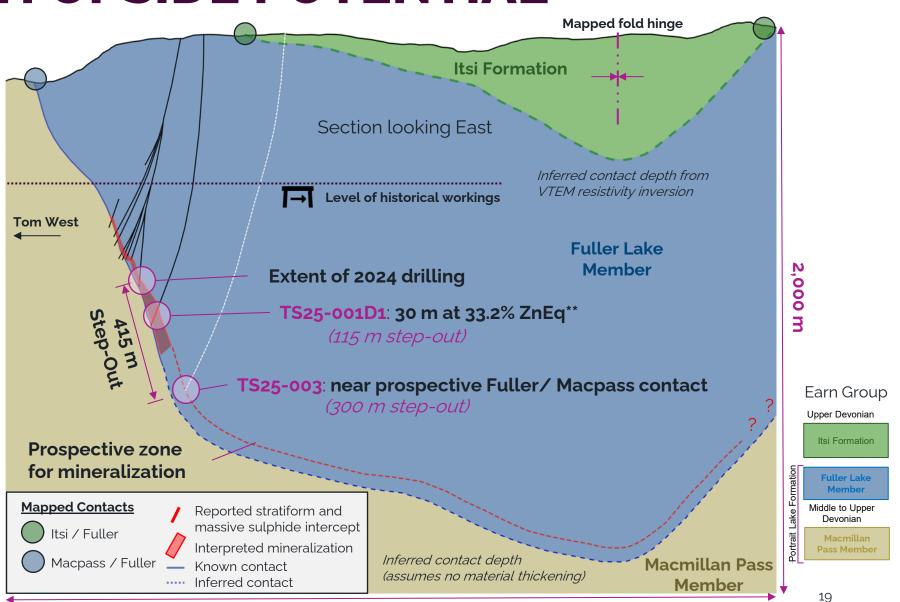
Hole ID	Width	True Width	_Zn_	_Pb_	Ag
	(m)	(m)	(%)	(%)	(g/t)
TS24-002	15.12	10	10.39%	18.10%	296.9
TS24-001	18.15	11	9.02%	7.46%	148.3
TS25-001D1	54.82	30	18.20%	13.93%	161

Note: True widths are estimated based on the bedding orientation, assuming a stratiform geometry to the mineralized zone. True widths are rounded to the nearest metre for widths over 10 m and to the nearest 0.1 m for widths less than 10 m.

Significant 115 m step-out (News Release Sep. 23, 2025)

Tom South Underground

TOM SOUTH UPSIDE POTENTIAL

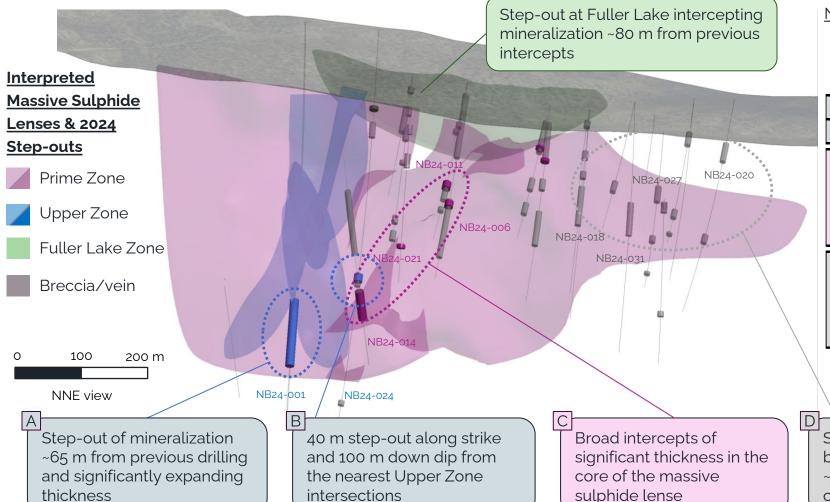

North

Continuous high-grade mineralization (stratiform and massive sulphide) identified along the Fuller Lake and Macmillan Pass contacts

TS25-001D1 (115 m step-out) proved continuity by intercepting a thick and extremely high-grade massive sulphide zone

TS25-003 (300 m step-out from TS25-001), remains in prospective geology

Zone continues to be open down-dip along the contact



South

2,500 m

BOUNDARY STEP-OUTS

Broad Step-out Intercepts at Known Massive Sulphide Lenses¹

Notable 2024 Step-outs

Hole ID	Width	True Width	Zn	_Pb_	Ag
	(m)	(m)	(%)	(%)	(g/t)
NB24-001	92.15	37	8.61%	2.60%	42.7
NB24-024	19.73	15	9.40%	1.07%	49.7
NB24-006	9.80	9.8	9.34%	0.50%	23.4
NB24-011	6.46	3.9	5.51%	0.65%	15
NB24-014	54.58	31	8.68%	3.68%	87.4
NB24-021	4.15	3.2	7.28%	0.29%	22.7
NB24-018	79.63	N/A	2.35%	1.09%	18.4
NB24-020	45.64	N/A	3.04%	0.01%	3.6
NB24-027	45.45	N/A	3.18%	0.02%	5.8
NB24-031	49.00	N/A	3.08%	0.01%	3.8
	NB24-001 NB24-024 NB24-006 NB24-011 NB24-014 NB24-021 NB24-020 NB24-020	(m) NB24-001 92.15 NB24-024 19.73 NB24-006 9.80 NB24-011 6.46 NB24-014 54.58 NB24-021 4.15 NB24-021 45.64 NB24-020 45.64 NB24-027 45.45	(m) (m) NB24-001 92.15 37 NB24-024 19.73 15 NB24-006 9.80 9.8 NB24-011 6.46 3.9 NB24-014 54.58 31 NB24-021 4.15 3.2 NB24-018 79.63 N/A NB24-020 45.64 N/A NB24-027 45.45 N/A	(m) (m) (%) NB24-001 92.15 37 8.61% NB24-024 19.73 15 9.40% NB24-006 9.80 9.8 9.34% NB24-011 6.46 3.9 5.51% NB24-014 54.58 31 8.68% NB24-021 4.15 3.2 7.28% NB24-020 45.64 N/A 3.04% NB24-027 45.45 N/A 3.18%	(m) (m) (%) (%) NB24-001 92.15 37 8.61% 2.60% NB24-024 19.73 15 9.40% 1.07% NB24-006 9.80 9.8 9.34% 0.50% NB24-011 6.46 3.9 5.51% 0.65% NB24-014 54.58 31 8.68% 3.68% NB24-021 4.15 3.2 7.28% 0.29% NB24-018 79.63 N/A 2.35% 1.09% NB24-020 45.64 N/A 3.04% 0.01% NB24-027 45.45 N/A 3.18% 0.02%

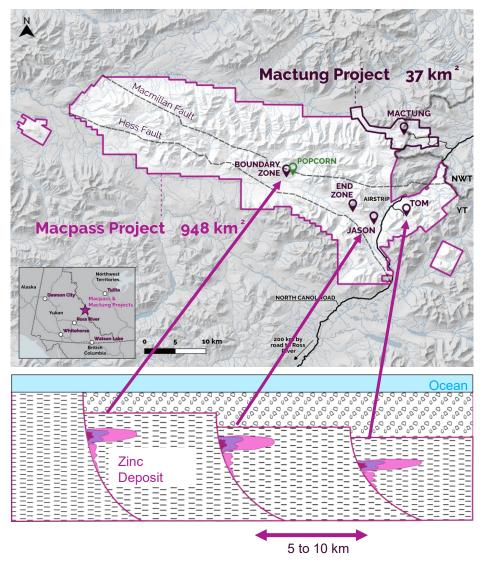
Note: True widths are estimated based on the bedding orientation, assuming a stratiform geometry to the mineralized zone. True widths are rounded to the nearest metre for widths over 10 m and to the nearest 0.1 m for widths less than 10 m.

Step-out of vein and breccia mineralization ~100 m east of the

current resource

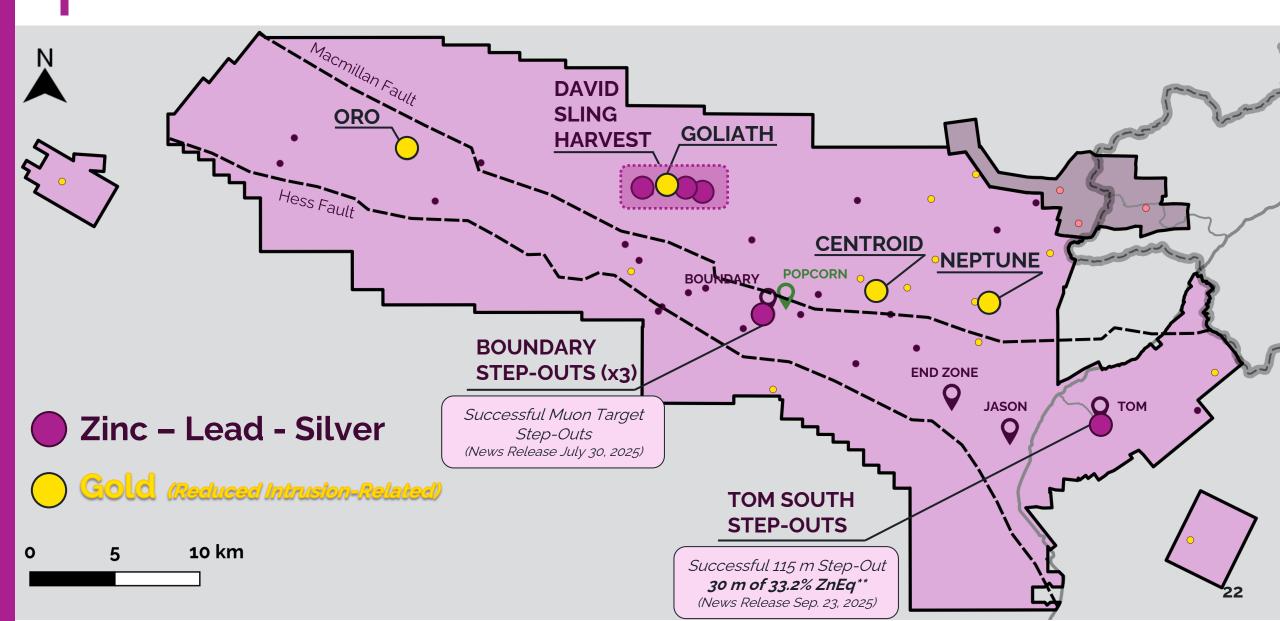
DISTRICT POTENTIAL

Genetic Model and Geophysical Anomalies in the Macpass District Suggest the Potential for Further Discoveries


Structural and Stratigraphic Control

Tom, Jason, End Zone, and Boundary deposits are located adjacent to **5-10** km spaced feeder-fault splays of the Macmillan-Hess Fault System

Same fault systems and prospective geology occur throughout the length of the Macpass project, along **SE-NW trends**


Exploration Potential

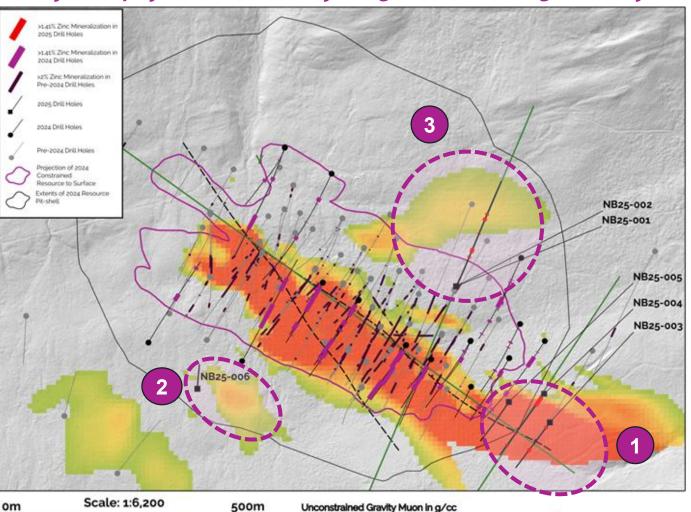
Geophysical anomalies, coincident soil and rock geochemical anomalies, and a history of systematic under-exploration for base metals, make these trends exceptionally attractive targets

Note: The simplified genetic model shows a proposed sub-surface depositional environment, with the curved pink lines representing the "stepping" faults controlling the distribution of the deposits. The pink plumes in the schematic cross section represent the theoretical environment where deposits at Tom, Jason, and Boundary formed within the sediment column, and are displayed prior to any

HIGH-PRIORITY TARGETS

BOUNDARY STEP-OUTS

Unconstrained Multiphysics at 991 m ASL


BOUNDARY SOUTH

Density Anomaly

determined to be

formational in nature

Combined Muon and Gravity Multiphysics Successfully Imaged Zones of High Density, Confirmed by Drilling

2.8 2.9

2.9

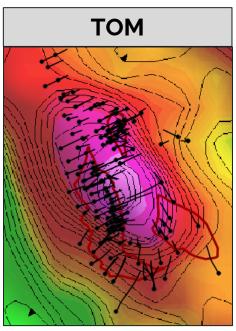
3 BOUNDARY NORTH

 Vein and breccia mineralization

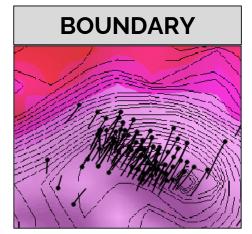
Drillhole	Interval Width (m)	Zinc (%)	Lead (%)	Silver (g/t)
NB25-002	7.44	3.80	0.04	8.3
NB25-002	21.72	3.71	0.01	4.2
NB25-002	3.59	3.16	0.01	5.4
NB25-002	13.50	2.37	0.06	2.5
NB25-002	6.90	2.28	0.62	8.7

1 BOUNDARY EAST

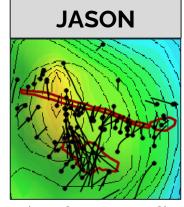
 Vein, replacement, and semi-massive sulphide mineralization

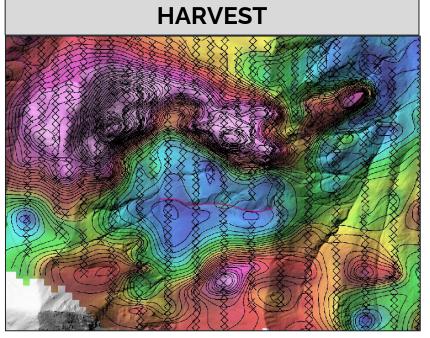

Drillhole	Interval Width (m)	Zinc (%)	Lead (%)	Silver (g/t)
NB25-003	6.62	1.70	0.01	2.2
NB25-003	11.84	1.58	0.21	3.4
NB25-004	35.34	3.35	0.01	2.2
NB25-004	4.31	3.86	0.04	12.3
NB25-004	4.40	9.35	1.38	21.2
NB25-005	3.14	5.62	0.02	4.3

For full results please see the Fireweed Metals news release dated July 30, 2025 23


FIREWEED

HARVEST (Zn-Pb-Ag)


Largest Gravity High Seen to Date on the Project


(Peak: 2.0 mGal)

(Peak: 2.5 mGal)

(Peak: 0.5 mGal)

(Peak: 3.6 mGal)

2 km

(All images at the same scale)

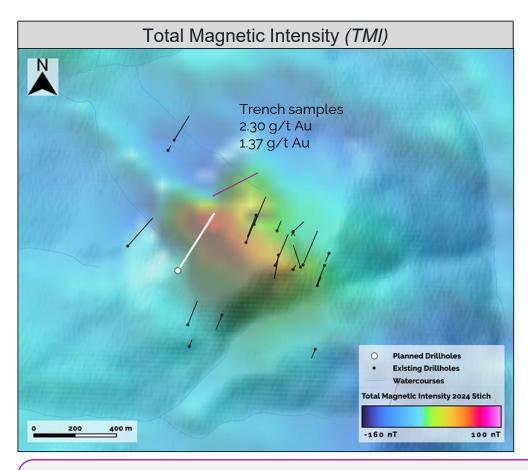
HARVEST - SLING AREA PROSPECTING

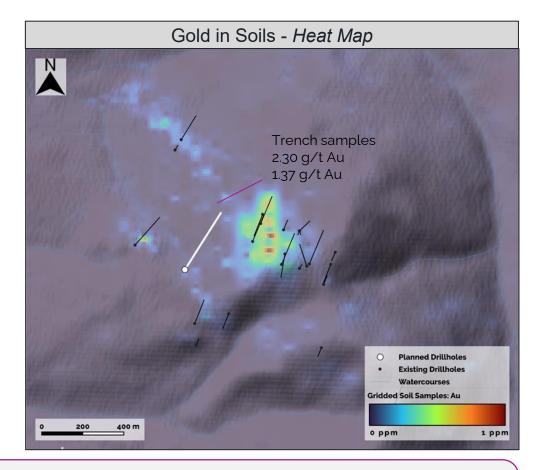
Smithsonite Creek

Hydrothermal Textures
Bladed barite, comb veining

Hydrothermal Breccias
Stibnite mineralization

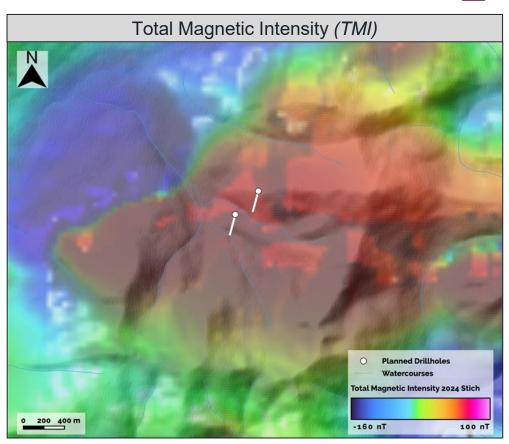
ORO (Au)

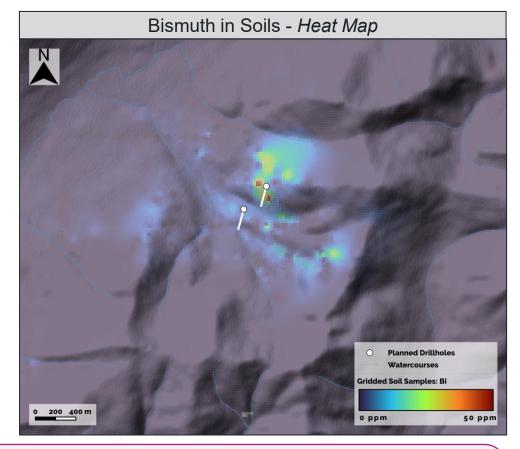




- Magnetic high with strong gold in soil anomalies in the periphery, potentially relating to the pyrrhotite-rich contact roof zone above a small, elongated, and potentially gold-bearing pluton (reduced intrusion)
- Historical drilling tested soil gold highs and did not target the intrusion

CENTROID (Au)

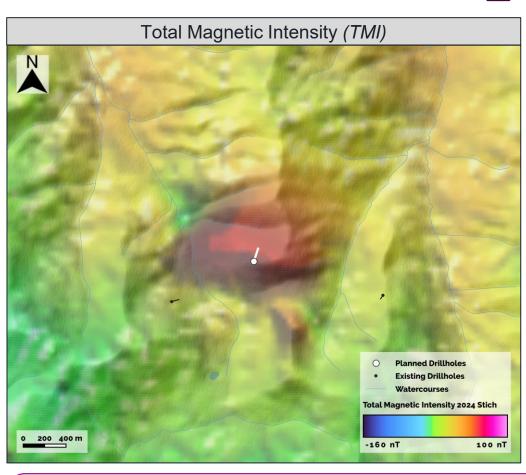


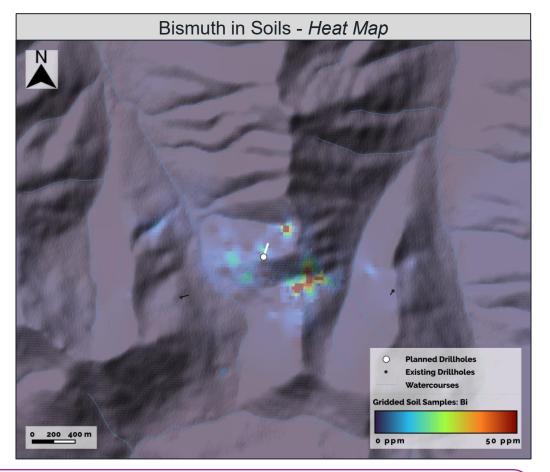


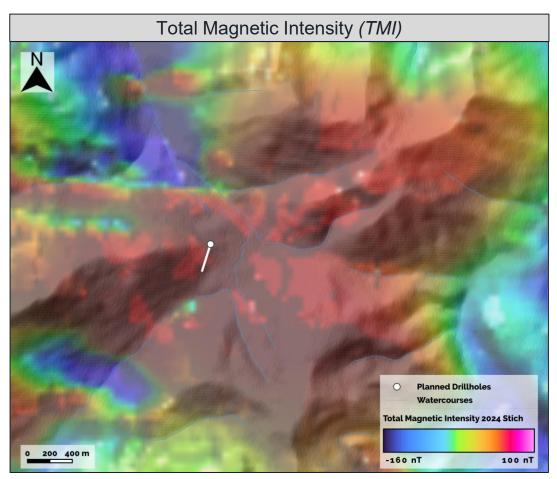
EM Structure Geology Soils Prospecting

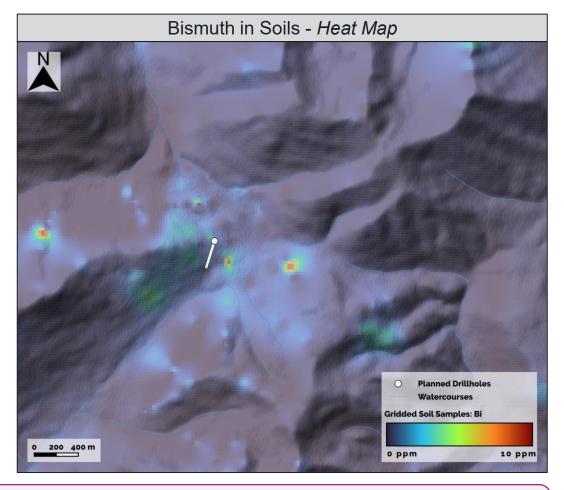
- Large elongated magnetic high with long axis parallel to regional trend
- Strong bismuth in soil anomalies indicating close-proximity to the contact roof zone above a potentially gold-bearing pluton (reduced intrusion)
- Veining with abundant arsenopyrite and pyrrhotite, within favourable calcareous unit

GOLIATH (Au)









- Large elongated magnetic high at the centre of a bismuth and arsenic anomaly
- Within the more favourable calcareous parts of the Road River group
- Potentially proximal to the contact roof zone above a potentially gold-bearing pluton (reduced intrusion)

NEPTUNE (Au)



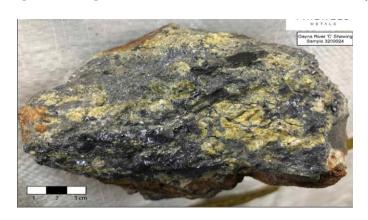
- Hornfelsed rock and strong magnetic response indicates close proximity to buried intrusion
- Abundant arsenopyrite veins in outcrop and anomalous bismuth in soil suggest an association with a reduced intrusion

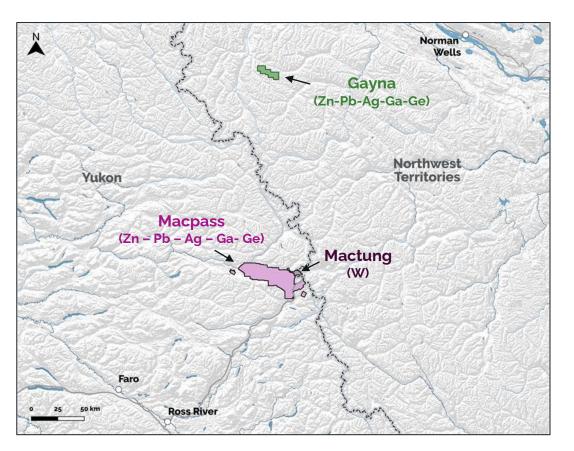
POTENTIAL MUON TOMOGRAPHY DEPLOYMENT

Potential for Multiple Shallow Holes to Test Strong Lead-in-Soil Anomalies

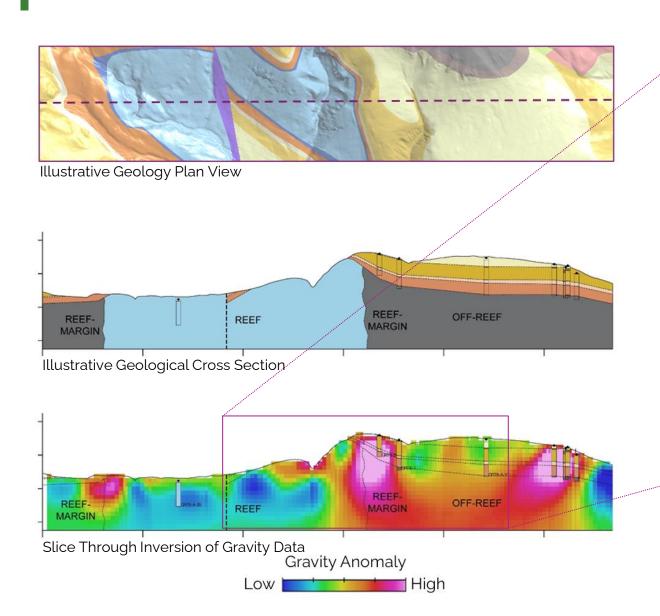
- 5 km strike length
- ✓ Highly prospective area, with the same geological host rock as Boundary.
 - o Multiple lead-zinc-silver soil anomalies, with zinc mineralization present locally at surface
- ✓ Potential to deploy cost-efficient muon holes at low elevations (valleys) yielding significant coverage areas

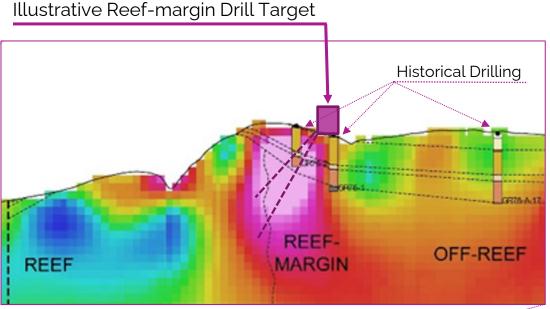
Gayna Project

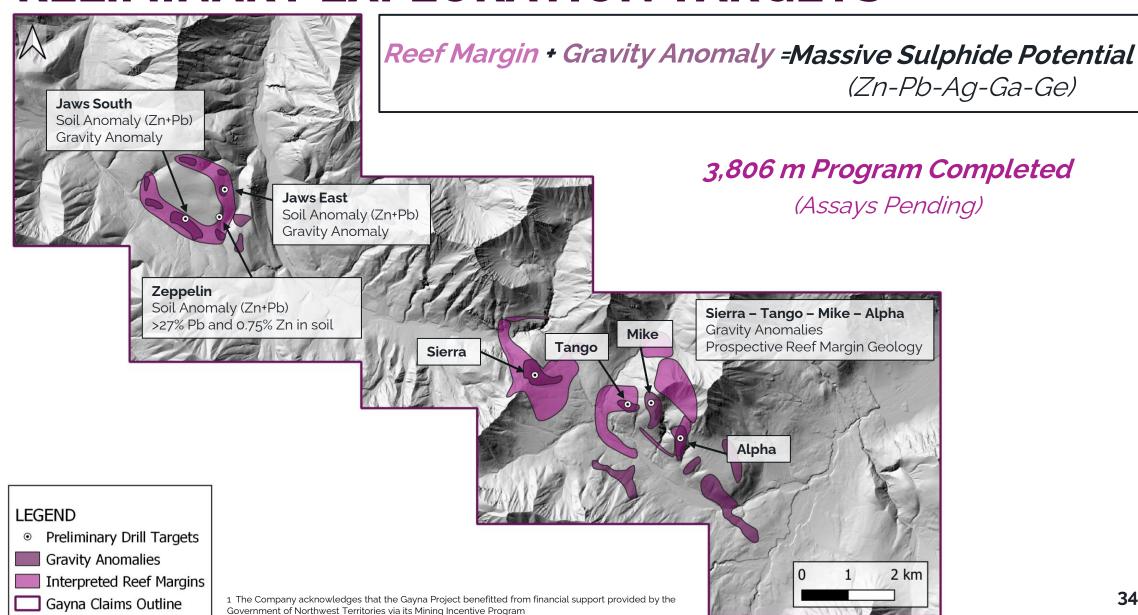

High Impact Frontier Exploration


We respectfully acknowledge that the Gayna Project is located within Settlement Areas of Sahtu and Gwich'in, and the Traditional Territory of First Nation of Na-Cho Nyäk Dun.

EXPLORATION POTENTIAL FOR ZINC, GERMANIUM, GALLIUM, LEAD, AND SILVER


Gayna Provides Optionality and Further Exposure to Critical Metals


- Located 180 km north of Macpass, in the Mackenzie Mountains, NWT
- Geological setting and mineralization: similar to that of a reef-style deposit, like Ivanhoe's high-grade Kipushi mine in DRC
- High-grade rock samples confirmed the presence of massive sulphide mineralization, also containing elevated gallium (Ga) and germanium (Ge)
- Ground gravity (2023) and airborne surveys (2024) identified drill targets on reef margins
- 3,806 m program completed: testing for high-grade zinc-lead-silver-gallium-germanium mineralization (assays pending)


2025 EXPLORATION APPROACH

Historical Drilling Exploring for Stratiform Mineralization Did Not Adequately Test for Mineralization Along Reef Margins

PRELIMINARY EXPLORATION TARGETS

Thank you!

Please visit us online at **fireweedmetals.com** and follow for updates.

Fireweed Metals Corp.

+1 (604) 689-7842 info@fireweedmetals.com

Head Office

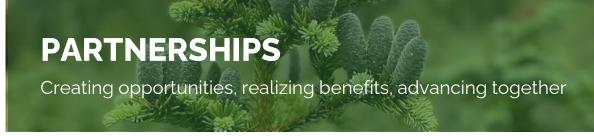
Suite 2800, Four Bentall Centre 1055 Dunsmuir Street PO Box 49225 Vancouver, BC V7X 1L2 TSX-V: FWZ
OTCQX: FWEDF
FSE: MoG

Appendix TSX-V: FWZ | FireweedMetals.com

ABOUT FIREWEED METALS

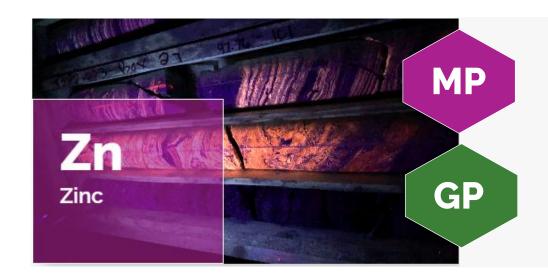
Fireweed is a Canadian company with the mission to explore and develop critical metals assets through progressive leadership, high standards, innovation, and collaborative partnerships for the benefit of present and future generations.

OUR VISION


Fireweed Metals will sustainably explore and develop critical minerals assets to support the transition to a low-carbon economy. We will focus on leading with integrity, striving for consistency in words and actions, being honest, transparent, and accountable, mitigating health and safety risks, and being progressive and innovative while promoting environmental and social stewardship.

We will act in a way that reflects our core value of respect, for both the environment in which we work and the people we work with. Our approach will foster meaningful relationships with employees and local communities, and will build trusted partnerships benefiting Indigenous peoples and shareholders.

OUR VALUES



SUSTAINABILITY APPROACH

- Implement robust practices informed by the aspirations and interests of Indigenous peoples
- Be environmentally and socially responsible
- Seek the consent of local Indigenous groups

COMMODITY FUNDAMENTALS

Zinc's unique properties make it an essential metal for everyday life. Zinc plays a crucial role in:

- Renewable Energy
- Transportation
- Food Security
- Energy Storage
- Healthcare
- Infrastructure
- Industrial Applications
- Electronics

Tungsten is an extremely versatile metal, essential for industrial applications in the following sectors :

- Automotive parts
- Aerospace & Defense
- Industrial machinery
- Drilling

- Boring and cutting equipment
- Logging and mining
- Electrical and electronics appliances

U.S. DPA & CANADA CMIF AWARDS

U.S. Defense Production Act (DPA) Title III

US\$15.8 M

Objective

Advance Mactung to a Final Investment Decision ("FID"), a key precursor to the construction and production of domestic tungsten concentrates for the North American industrial base.

Scope

- Mine design optimization
- · Geotechnical investigations and metallurgical test programs
- New feasibility study
- Environmental studies supporting licenses and permits
- Industry engagement
- Engagement with local Indigenous communities

Benefits & Implications to FWZ

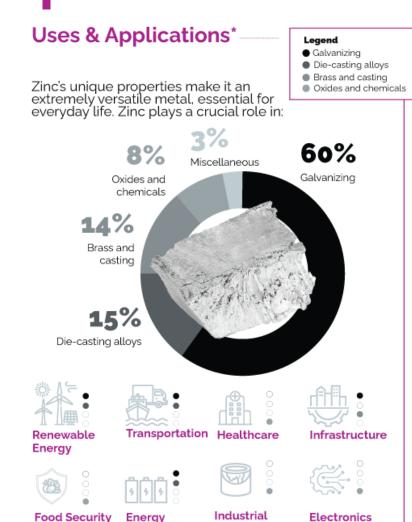
- ✓ Non-dilutive
- ✓ Strategic significance
 - Positions Mactung as a strategic asset for the North American industrial base
 - Advancement of Mactung to catalyze infrastructure upgrades that benefit the Macpass District
- ✓ Potential to capitalize on critical mineral tailwinds
 - Potential for further collaboration with government
 - Foreign export restrictions on tungsten create a favourable market environment for North American producers
- √ No commercial covenants limiting future concentrate sales

Canadian Critical Mineral Infrastructure Fund

C\$12.9 M

Objective

Advance planning efforts to enable infrastructure improvements that serve the critical metals district at Macmillan Pass

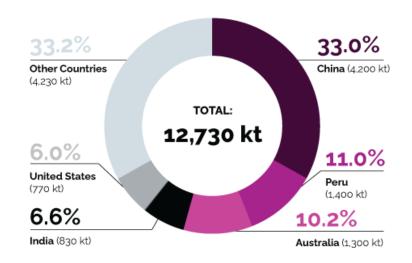

Scope

- Support Fireweed's implementation of the first phase (Phase I) of the "North Canol Infrastructure Improvement Project" ("NCIIP"), including preliminary designs for:
 - Approximately 250 km of road improvements
- Upgrades to an existing transmission line between Faro and Ross River
- Construction of a new transmission line from Ross River to Macmillan Pass

Benefits & Implications to FWZ

- ✓ Non-dilutive
- ✓ Supports critical infrastructure necessary to unlock the critical metals district at Macpass
- ✓ Enhances the economics of future mine development at Macmillan Pass

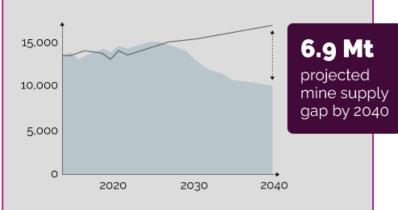
WHY ZINC?



Applications

Storage

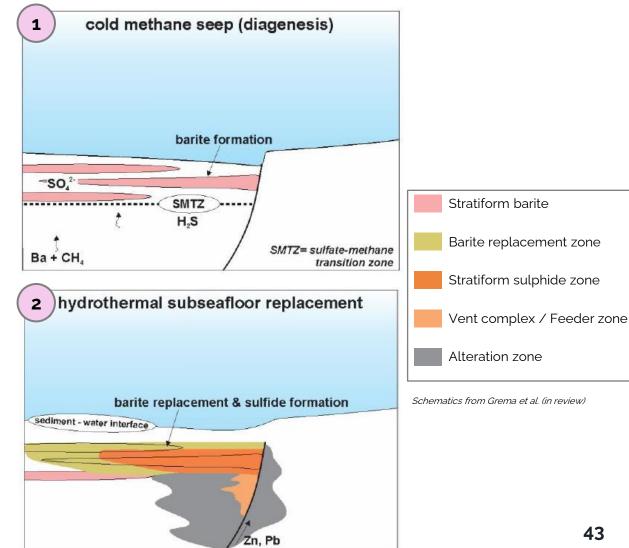
Zinc Supply


Worldwide Zinc Mine Production in 2022 (kt)*

China is the largest zinc producer, with 53% of the world's zinc production in 2022.

Zinc Mine Production and Demand (kt)

Zinc demand is expected to steadily increase, underpinned by energy transition uses, while supply is expected to fall systematically starting 2025, primarily driven by declining production rates at existing mines and fewer new projects coming on-line.


Sources: Wood Mackenzie, CRU, IZA, BGRIMM, SMM, Teck.

*Source: Government of Canada, "Zinc facts", 2021 *Source: U.S. Geological Survey, "Mineral Commodity Summaries", 2023

MACPASS DEPOSIT GEOLOGY

- Stratiform, Sediment-Hosted Zn-Pb-Ag Deposits: The Tom, Jason, End Zone, and Boundary Zone deposits are examples of clastic-dominated (CD) sediment-hosted massive sulphide deposits
- Mineralization Model Reinterpreted from Classic SEDEX
 Models: involves replacement of porous, barite-rich sediments in a sub-seafloor environment rather than strict seafloor exhalation
- Distinct Mineralization Styles:
 - Early Stage: Finely laminated pyrite, sphalerite, and galena, grading to semi-massive and massive sulphides near feeder structures. Generally associated with barite-rich layers at various stratigraphic levels
 - Boundary Zone: Features a later, cross-cutting style with breccia, veins, and siderite-rich replacement textures within conglomerates and volcaniclastics
- Geological Domains:
 - Tom: Sub-domained into distinct facies (black, grey, pink, massive sulphide)
 - Boundary Zone: Divided into Massive Sulphide, Boundary Vein, and lower-grade Boundary Halo domains

<u>Early-stage Mineralization - Two Step Genetic Model</u>

MACPASS 2024 MRE

Macpass 2024 MRE

Category	Deposit	Tonnage	Grade			Contained Metal			
			ZnEq¹	Zn	Pb	Ag	Zn	Pb	Ag
		(Mt)	(%)	(%)	(%)	(g/t)	(M lbs)	(M lbs)	(M oz)
	Tom	17.52	9.90%	6.30%	3.34%	32.9	2,435	1,291	18.56
Indicated	Jason	3.80	9.09%	7.62%	1.86%	1.7	638	156	0.21
mulcateu	End Zone	0.34	16.15%	3.81%	12.32%	86.2	29	93	0.95
	Boundary	34.32	5.63%	4.86%	0.55%	21.6	3,682	412	23.83
	Total	55.98	7.27%	5.50%	1.58%	24.2	6,784	1,952	43.54
	Tom	18.94	9.10%	6.56%	2.30%	25.2	2,738	960	15.37
Inferred	Jason	11.65	10.40%	5.48%	4.33%	48.2	1,407	1,112	18.05
interred	End Zone	0.44	8.76%	1.86%	6.88%	48.1	18	67	0.68
	Boundary	17.43	3.75%	3.48%	0.23%	9.5	1,337	87	5.32
	Total	48.46	7.48%	5.15%	2.08%	25.3	5,500	2,226	39.42

Gallium & Germanium By-Products

Category	Deposit	<u>Tonnage</u>	Grade		Containe	ed Metal
			Ga	Ge	Ga	Ge
		(Mt)	(g/t)	(g/t)	(kg)	(kg)
	Tom	17.52	5.71	9.22	100,000	161,500
Indicated	Jason	3.80	4.76	8.74	18,100	33,200
Indicated	End Zone	0.34	6.42	4.81	2,200	1,600
	Boundary	34.32	8.53	12.19	292,600	418,400
	Total	55.98	7.38	10.98	412,900	614,800
	Tom	18.94	5.94	9.39	112,500	177,800
Informed	Jason	11.65	3.36	6.32	39,200	73,500
Inferred	End Zone	0.44	3.56	2.68	1,600	1,200
	Boundary	17.43	7.39	8.14	128,800	141,900
	Total	48.46	5.82	8.14	282,100	394,400

Note: MRE effective date: September 4, 2024. For complete MRE-related notes refer to the relevant slides at the end of this presentation.

¹ Zinc equivalency is based on a price of US\$1.40/lb Zn, US\$1.10/lb Pb, and US\$25/oz Aq, CAD:USD exchange rate of 1.32, and a number of operating cost and recovery assumptions specific to each deposit or domain.

RESOURCE FOOTNOTES

- All mineral resources have been estimated in accordance with CIM definitions, as required under NI 43-101.
- Data for this mineral resource estimate has been independently reviewed and validated by a third-party consultancy, SLR Consulting (Canada) Ltd.
- Pierre Landry P.Geo. of SLR Consulting (Canada) Ltd. ("SLR") is independent of Fireweed Metals Corp., and a 'Qualified Person' as defined under NI 43-101. Pierre Landry is responsible for the Macpass Mineral Resource Estimate. g/t: grams per tonne; Mlbs: million pounds; Moz: millions of troy ounces; Mt: million metric tonnes.
- Mineral resources are reported within conceptual open pit ("OP") shells and underground ("UG") mining volumes to demonstrate Reasonable Prospects for Eventual Economic Extraction ("RPEEE"), as required under NI 43-101; mineralization lying outside of the OP shell or UG volumes is not reported as a mineral resource. Note the conceptual OP shell and UG volumes are used for mineral resource reporting purposes only and are not indicative of the proposed mining method; future mining studies may consider UG mining, OP mining or a combination of both. Mineral resources are not mineral reserves and do not have demonstrated economic viability.
- All quantities are rounded to the appropriate number of significant figures; consequently, sums may not add up due to rounding.
- All prices in Canadian dollars unless otherwise stated.
- Open Pit mineral resources are reported at a pit wall angle of 45°, Revenue Factors of 0.8 (Tom, End Zone), 0.6 (Jason), 1.0 (Boundary Zone), and Net Smelter Return ("NSR") cut-off of \$30/tonne ("t").
- Underground mineral resources are constrained within reporting panels with heights (H) of 20 m, lengths (L) of 10 m, with 10 m H and 5 m L sub-shapes and minimum widths of 2 m at Tom, Jason, and End Zone; and 20 m H by 20 m L with 10 m sub-shapes and a minimum width of 5 m at Boundary Zone, using an average panel NSR cut-off of \$112/t.
- NSR block values and zinc equivalency are based on a price of US\$1.40/lb Zn, US\$1.10/lb Pb, and US\$25/oz Ag, CAD:USD exchange rate of 1.32, and a number of operating cost and recovery assumptions specific to each deposit or mineralization domain (see Tables 2 and 3 from Fireweed's News Release September 4, 2024).
- ZnEq has been calculated on a block-by-block basis using the NSR calculation and input parameters related to each deposit or mineralization domain (see Tables 2 and 3 from
 Fireweed's News Release September 4, 2024). For reporting subtotals and totals, ZnEq values have been calculated using the mass weighted average of the ZnEq block values of each
 respective domain for its respective classification category within OP and UG reporting volumes.
- The effective date of the MRE is September 4, 2024 and the MRE is based on all drilling data up to and including holes drilled in 2023 with a final database cut-off date of June 23, 2024. The MRE does not include any data from holes drilled in 2024.
- Inferred mineral resources are considered too speculative geologically to have economic considerations applied to them that would enable them to be categorized as mineral reserves. There is also no certainty that these inferred mineral resources will be converted to the measured and indicated categories through further drilling, or into mineral reserves, once economic considerations are applied. The Inferred Mineral Resource in this estimate has a lower level of confidence than that applied to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of the inferred Mineral Resource could be upgraded to an Indicated Mineral Resource with continued exploration.

QA/QC AND DATA VERIFICATION

- Soil, rock and stream sediment datasets presented for exploration targets at Macpass have been compiled from programs spanning 1968-2024
- Fireweed 2017-2024 sampling programs were carried out under rigorous QA/QC programs
- Standards, blanks and duplicates are included in Fireweed's sample stream as a QC measure. Standards and blanks in 2017-2024 results have been approved as acceptable. Duplicate data add to the long-term estimates of precision for data on the project; precision for surface sampling results have been deemed to be within acceptable levels.
- Soil samples collected by Fireweed 2017-2024 were sent to BV prep lab in Whitehorse and dried and sieved to 80 or 230 mesh (codes SS80 or SS230) and sent to BV Vancouver for analysis. Results are reported by ultra trace aqua regia digest followed by ICP-MS multi-element analysis (AQ250)
- Rock samples collected by Fireweed were sent to BV in Whitehorse and crushed and a 500 g split was sent to the BV laboratory in Vancouver, B.C to be pulverized to 85% passing 200 mesh size pulps. Zn, Results are reported by aqua regia digest followed by ICP-ES/MS multi-element analysis (AQ270); Au is reported by fire assay (FA330)
- Very little QAQC data or analytical methodology is available for historical data (pre-2017)
- Where available, previous operators' soil and rock data were directly imported into Fireweed's database from original assay certificates (around 2010 to present)
- Historical rock, soil and stream sediment data from the late 1960s to mid 1990s were compiled using values that were digitized by previous operators or digitized by Fireweed. Spot checks on historical values show that the values recorded in original maps or assay certificates were found to be in good agreement with database values. No further data verification was completed on historical geochemical data.
- Raw and processed geophysical data has been assessed and verified prior to delivery to Fireweed for QAQC of ground gravity, VTEM, and magnetic data.
- Preliminary geophysical data at Harvest and across Macpass was verified to show repeatability within a range below 30µGal. Readings with anomalous elevation measurements in excess of one metre difference from high resolution LiDAR are muted. Gravimeters were drift corrected daily and scale corrected where scaling differences were observed at the time of surveying. Daily elevation measurements at control stations were analysed for cross-operator error in antenna height offset and any systematic error that was identified was corrected. All gravity data received a full suite of latitude, tide, elevation, and terrain corrections, with terrain corrections completed using LiDAR data and a 10 cm discretization scheme. A suite of complete Bouguer Anomaly products was generated across a range of background densities from 2.60 g/cm3 to 2.8 g/cm3 and evaluated to determine a possible solution based on the Nettleton method of least correlation to topography. The final residual Bouguer anomaly was generated using a high pass filter at 2500 m wavelength as an upper limit.
- ** Zinc equivalent calculations assume metal prices of US\$1.40/lb zinc, US\$1.10/lb lead, and US\$25/oz silver, zinc concentrate recoveries of 89% Zn, 22% Ag, lead concentrate recoveries of 75% Pb, 59% Ag, 0% payability of Ag in zinc concentrate, 85% payability of Zn in zinc concentrate, 94% payability of Ag in lead concentrate, and 95% payability of Pb in lead concentrate. Germanium and gallium were not included in zinc equivalency calculations. The zinc equivalency formula used is: ZnEq% = ((0.56*Ag g/t)+(16.52*Pb%)+(21.32*Zn%))/21.32. The assumptions used in this zinc equivalency calculation are the same as the assumptions used for zinc equivalency in the 2024 Mineral Resource Estimate.